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SUMMARY

The present paper deals with the use of the pseudo-characteristic formulation of the Navier–Stokes and
Euler equations recently introduced by Sesterhenn (Comput. Fluid. 2001; 30:37–67) for the simulation of
acoustic wave propagation. The emphasis is put on the formulation of an efficient method on structured
curvilinear grids, along with the definition and implementation of efficient boundary conditions. The
cases of inflow, outflow, rigid/compliant walls and walls with prescribed impedance are addressed. The
proposed boundary conditions are assessed on generic cases. The pseudo-characteristic formulation enables
a straightforward and optimal use of high-order upwind dispersion-relation-preserving schemes, yielding
an efficient method. Copyright q 2006 John Wiley & Sons, Ltd.

Received 8 December 2005; Revised 11 April 2006; Accepted 11 April 2006

KEY WORDS: numerical scheme; Euler equation; computational aeroacoustics; boundary conditions

1. INTRODUCTION

Computational aeroacoustics (CAA), which consists in computing the generation of acoustic waves
by an unsteady flow and the propagation of the acoustic waves through the fluid, is a rapidly growing
field (see Reference [1] for an up-to-date presentation and Reference [2] for some recent examples).
The two main reasons are the requirement to decrease the radiated sound level in many engineering
processes and the growth of the available computing power.

The basic models for CAA are the Navier–Stokes equations and the Euler equations. The
former is expected to yield an accurate description of both acoustic wave generation and prop-
agation, while the later is mainly considered as a reliable model for wave propagation.
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Therefore, one of the main CAA problem consists in finding an efficient method for solv-
ing these equations and modelling the physical problems of interest. This last requirement
involves the capability of defining boundary conditions that accurately represent the true phys-
ical processes while minimizing the computational cost and preserving the numerical
stability.

A huge amount of work has been devoted to the definition of numerical schemes for the
Euler equations with good wave propagation properties. Among the most striking results, one
can cite the family of the dispersion-relation-preserving schemes introduced by Tam
and Webb [3, 4], the renewal of compact schemes [5–7] or the discontinuous Galerkin
methods [8–11]. Several numerical schemes have been identified (see References [1, 12] for de-
tailed surveys), which are accurate enough to simulate wave propagation in the linear regime over
a few dozens of wavelengths. But it is important to note that the issue of the definition of a method
which enables the proper handling of a wide set of boundary conditions, including complex ones
such as time-domain impedance boundary conditions for liners or walls made of porous materials,
is still an open issue.

The present paper deals with the use of the pseudo-characteristic formulation recently proposed
by Sesterhenn [13] for the compressible Navier–Stokes equations on a curvilinear grid for CAA
purpose. The emphasis is put on the discretization on structured curvilinear grids and the def-
inition and implementation of efficient boundary conditions, including time-domain impedance
boundary conditions. The boundary condition issue is known to be very important, since in-
accurate boundary conditions can generate spurious waves which corrupt the results. A large
amount of work has been devoted to this problem (see Reference [1] for a detailed review).
A commonly agreed conclusion is that no fully general, satisfactory inflow/outflow boundary con-
dition is available. The issue of representing solid boundary with prescribed, frequency-dependent
impedance in the time domain is also an open problem, for which a very few solutions have been
proposed.

The paper is organized as follows. Section 2 is devoted to the presentation of governing equa-
tions written in both Cartesian and curvilinear coordinates. Associated boundary conditions of
practical interest for CAA purpose are presented in Section 3: inflow/outflow boundary con-
ditions, sponge layer, rigid/compliant solid wall and solid wall with a prescribed impedance.
Key elements of the numerical method are given in Section 4. Numerical accuracy of the
method is investigated in Section 5. Numerical experiments dealing with the outflow bound-
ary conditions are presented in Section 6, while the time-domain impedance boundary condi-
tion is assessed in Section 7. The accuracy of the proposed wall boundary condition versus
the one obtained by the usual approximate solid wall boundary condition based on the ex-
trapolation of some variables at the wall is checked in Section 8. Conclusions are given in
Section 9.

2. PSEUDO-CHARACTERISTIC FORMULATION OF THE COMPRESSIBLE
NAVIER–STOKES EQUATIONS

2.1. Governing equations in Cartesian coordinates

We first recall the main features of the pseudo-wave formulation introduced by Sesterhenn [13].
The 3D Navier–Stokes equations in terms of the pressure p, the velocity u = (u1, u2, u3) and the
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entropy s are as follows, using the notation of repeated indices:
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where the viscous tensor is defined as

�i j = 2�si j + �
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with 3� + 2�= 0. We will refer to the thermally ideal gas throughout this paper:

p= �RT (2)

The propagation of heat is given by Fourier’s law:

q j =−�
�T
�x j

where T is the temperature (in Kelvins K) and � the thermal conductivity. The constant � can be
expressed in terms of the dynamic viscosity � by

� = �Cp

Pr

where Pr is the Prandtl number, and Cp the specific heat at constant pressure, Cv the specific
heat the constant volume, and the ratio of the specific heats is denoted by �:

� = Cp

Cv

Finally, viscous dissipation is denoted by

�= �i j si j

These equations, once discretized on a suitable grid, allows the direct numerical simulation of
a compressible flow, and thus describe all non-stationary dynamics that results. They also allow
us to describe the propagation of acoustic waves given that the grid resolution is adapted to the
problem.
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As shown in Reference [13], fluxes can be rewritten in the following pseudo-characteristic form:
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where the following notations are used:
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(9)

It is clearly seen that fluxes with ± superscripts (Equations (4), (6) and (8)) are related to
acoustic waves (i.e. to disturbances which propagate at speed c with respect to the fluid), while
the other ones correspond to fluctuations advected by the fluid. This new decomposition of the
pressure, velocity and entropy fluxes enables a very simple and natural separation between acoustic
and hydrodynamic disturbances. This feature will be of great help to define boundary conditions
and stabilizing the numerical method.

2.2. Pseudo-characteristic formulation of the Navier–Stokes equations on a curvilinear grid

We now address the issue of the formulation of an efficient method on curvilinear grids. It is worth
noting that most theoretical works deal with uniform grids (and most optimized schemes for wave
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propagation have been designed for uniform grid computation only) while a most practical CAA
problems involve curvilinear grids. Therefore, the issue of finding a formulation of the governing
equations which enables the control of the numerical error on curvilinear grids is of primary
importance. This section addresses the extension of the above pseudo-wave formulation to the
case of structured curvilinear grids. We follow here the original development by Sesterhenn [13].

Let us first introduce a coordinate mapping

� j = � j (xi ) (i, j = 1, 2, 3)

and we will rewrite the Cartesian equations locally as waves which propagate normally to the
surfaces � j = constant.

We will note ��(l)/�xi = � l
, i , and the contravariant velocity components as ul = � l

, i ui .
Entropy transport will be decomposed into waves which propagate normally to the surfaces

� l = constant. Therefore, we define

�k
s = u(k) �s

�	(k)
(10)

where the upper index k indicates the contravariant transport direction and the lower index s
identifies the entropy wave. Indices in brackets are not summed using the summation convention.

We define the following pseudo-wave terms:
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which can also be expressed as follows:
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They are associated with disturbances propagating at speed
(
u(k) ± c

√
g(kk)

)
.

The pseudo-characteristic formulation of the Navier–Stokes equations is as follows:
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This new formulation is algebraically equivalent to (1). However, since we know the direction
of the propagation of the different waves, we can use an upwind scheme to discretize each wave
accordingly, which in turn guarantees the stability of the scheme and also welcomed properties of
a DRP spatial scheme, which we will detailed later on.

3. DEFINITION OF EXACT CONSISTENT BOUNDARY CONDITIONS

A very interesting feature of the pseudo-characteristic formulation is that it enables a very accurate
and simple implementation of the boundary conditions. The very reason why is that using this
formulation the full Navier–Stokes equations are solved at boundary nodes, fluxes associated with
incoming waves being prescribed in an adequate way to enforce the targeted physical effects. Since
the full equations are solved at the boundary, and not replaced by simplified surrogate models, the
pseudo-characteristic formulation is expected to have a greater potential than other formulations,
which rely on the implementation of approximate boundary conditions.

3.1. Subsonic/supersonic outflow boundary conditions

The supersonic outflow boundary condition requires no special treatment: since the flow is
supersonic, all advection speeds u + c, u − c and u have the same sign, and all inviscid fluxes
are computed at the boundary nodes using the high-order upwind scheme given by Equation (43).
The full unmodified equations are therefore solved at the outflow plane.

The definition of subsonic non-reflecting boundary conditions is straightforward. Assuming
that the outflow boundary is located at the node i = Nx , a non-reflecting boundary condition is
obtained solving the Navier–Stokes equations while setting the incoming acoustic disturbance to
zero (i.e. taking X− = 0 in Equation (3)). The implementation of this condition is very easy, since
it represents a minor modification in the method used at the interior nodes. It is important to note
that this condition is exact, in the sense that all physical variables at the outflow plane are evaluated
solving the full Navier–Stokes system. This non-reflecting boundary condition is easily extended
to the case of curvilinear grids, setting �1− = 0 in (14).

A potential weakness of this very simple subsonic outflow condition is that the high-order
upwind scheme is modified near the exit boundary, and it is well-known that a change in the
numerical scheme can generate spurious reflected waves inside the computational domain (e.g.
see Reference [14]). To minimize these spurious wave generation, a buffer layer technique can be
very easily defined using the pseudo-characteristic formulation. It is here proposed to set X− = 0
in the layer ranging from i = Nx −4 to i = Nx , i.e. at all nodes at which the interior DRP scheme
cannot be utilized. An alternative solution is to compute X− = 0 with a first-order accurate upwind
scheme in this region to damp incoming waves.
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3.2. Subsonic/supersonic inflow boundary conditions

The supersonic inflow condition is also immediately implemented, since it consists in prescribing
the variation of all unknowns at the boundary nodes. This is equivalent to imposing �p/�t , �u/�t ,
�v/�t , �w/�t and �s/�t at each time step in (3), or to solve the Navier–Stokes equations. For a
supersonic inlet, since the acoustic waves are not able to go back up the flow, we can prescribe
the quantities �p/�t , �u/�t , �v/�t, and �s/�t on the boundary for a 2D case.

These four quantities allow us to solve Equations (3). For an inlet on the left of the computational
domain, we have
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For curvilinear grids, we prescribe the same quantities as in the Cartesian case, which leads
us to the following boundary conditions if we consider the Euler equations on the left boundary
(�1 = 0):
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The pseudo-characteristic formulation also enables the definition of fully consistent exact inflow

conditions in the subsonic case. Considering the case of a subsonic inflow condition at the boundary
i = 1, one can see that the definition of such a condition is equivalent to prescribing X+, Xs , Xv

and Xw at this location at each time step. Since there are four unknown fluxes and five unknown
physical variables, one recovers the well-known results that the time variation of all physical
unknowns cannot be prescribed at the same time.
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A careful examination of system (3) shows that prescribing �v/�t and �w/�t is equivalent
to prescribing values for Xv and Xw. To obtain a well-posed problem, one condition must be
prescribed for each of these two velocity components. The three remaining physical variables
(namely p, u and s) being coupled at the interface, they cannot be treated separately. A consistent
inflow condition will therefore consists in finding values of �p/�t , �s/�t and �u/�t (or in an
equivalent manner X+ and Xs) at the inlet plane. A large number of combinations can be defined,
depending on the prescribed quantities.

For example, if �p/�t and �s/�t are prescribed, then (3) yields
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If �u/�t and �s/�t are prescribed, then we obtain
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It is important to note that these boundary conditions are exact, since they are directly derived
from the Navier–Stokes equations without any assumptions. Therefore, they are consistent from
a thermodynamic viewpoint.

3.3. Rigid/compliant isothermal wall

Now let us address now the modelling of an infinitely rigid or moving isothermal wall. In the 2D
case, Equations (3) are of the following form:
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Considering a solid wall located at the bottom of the computational domain, it is observed that
the wall boundary condition is a particular case of the subsonic inflow conditions. The fluxes to be
evaluated are Y+, Yu and Y s , while prescribed quantities are the wall velocity and the isothermal
constraint.

Some algebra yields the following relations for Y u and Y+:
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The wall-normal entropy flux Y s is computed using the isothermal constraint in the following
way:
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Thus, together with (20) and (21), we have finally
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The rigid wall boundary condition is recovered taking �u/�t = �v/�t = 0. The same system of
equation can be used to model a porous boundary with a prescribed transpiration velocity. An
important point is that, once again, the boundary condition is exact and fully consistent from
a thermodynamic viewpoint.

On a curvilinear grid, the equations are
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As before, we consider that the wall is situated on the lower boundary (�2 = 0). Since the
acoustic waves propagate normally to the surfaces �i = constant, only the acoustic wave �2+ is
unknown. Using (25)2, we can obtain �2
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To evaluate �2
s we use as before the isothermal constraint which gives us
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3.4. Time-domain boundary condition for active walls with prescribed impedance

3.4.1. General. In this section, we will study the modelling of absorbent materials, which are used
for the acoustic treatment of solid surfaces, for the simulation of propagation of acoustic waves
in the temporal domain. The study will comprise absorbent walls of plane material with localized
spatial reaction.

This modelling is necessary to represent some noise reduction devices, such as liners. Its objective
is to represent, for incident acoustic waves, the properties of the material, and thus of the reflected
wave. These properties are classically represented, in the ideal case of a plane wave of frequency

 in the absence of a flow, through the notion of impedance Z, defined for a monochromatic
wave to be the ratio between the acoustic pressure p̂a , and the component of the acoustic velocity
normal to the wall, v̂a,n at its surface:

Z= p̂a
v̂a,n

(26)

where quantities with a hat are defined in the Fourier space. It is natural to normalize this quantity
by the characteristic impedance of the medium �c (≈ 400 kgm−2 s−1 in air). This defines the
reduced impedance, which is dimensionless:

Z = Z

�c
(27)

A solid wall with prescribed impedance can be taken into account in a straightforward manner
using the pseudo-characteristic formulation introducing the reflection coefficient Ŵ , which is the
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amplitude ratio of the incident acoustic wave and the reflected acoustic wave. If we consider that
the acoustic waves propagate in the positive direction of y normal to the wall, we have:

Ŷ− = Ŵ Ŷ+ (28)

In the following, for the sake of simplicity, we will consider the 1D inviscid case, where the
acoustic wave propagates along the y axis in an inviscid fluid. The equations are thus

�p
�t

= −�c

2
(Y+ + Y−) + p

Cv

(
Xs + �s

�t

)
�v

�t
= 0= −

(
1

2
(Y+ − Y−)

)
�s
�t

= −Xs

(29)

By using (29)3, (29)1 becomes

�p
�t

=−�c

2
(Y+ + Y−) (30)

Applying a temporal Fourier transform to this last equation and (29)2, we can express the
reduced impedance (by supposing that �c is constant)

Z = Z

�c
= Ŷ+ + Ŷ−

Ŷ+ − Ŷ− (31)

By using (28), we have

Z = 1 + Ŵ

1 − Ŵ
(32)

which implies that

Ŵ = Z − 1

Z + 1
(33)

An interesting feature of this that the velocity at the wall (which is non-zero) will be di-
rectly computed solving the governing equations with the ad hoc value of the incoming acoustic
flux. Therefore, it will be fully consistent with the pressure field. The condition of realizabil-
ity is automatically satisfied since the image of the half-plane Re(Z)�0 via the transformation
(Z − 1)/(Z + 1) is the interior of the circle |Ŵ |�1.

3.4.2. Implementation of a three-parameters impedance model. The impedance condition (28) is
written in the frequency space, and must therefore be re-expressed in the time domain before it can
be used in practical simulations. Since its direct translation in the time domain would introduce a
convolution product with a infinite memory effect, it must be approximated using a nearly local
(in time) model.
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In the following, we will use the three-parameters impedance model approximation proposed
by Tam and Auriault [15], which is of the form

Z(
) = R0 + i

(
X−1



+ X1


)
(34)

The condition of realizability is satisfied if R0>0.
Considering Equation (28) and applying an inverse temporal Fourier transform, we have

Y−(t) = −
∫ ∞

−∞
W (t − �)Y+(�) d� (35)

Fung and coworkers [16, 17] proposed to discretize this relation in the following manner:

Y−(t) =
T/�t∑
j=0

W ( j�t)Y+(t − j�t) (36)

where T is the memory time of the kernel of convolution W . For model (34), we have

W (t) = H(t)W̃ (t) − �(t) (37)

where H is the Heaviside function, and � the Dirac delta, and

W̃ (t) =
(

2

X1

)(
cos(�t) − �

�
sin(�t)

)
exp(−�t) (38)

with

� = 1 + R0

2X1
, �=

√

2
0 − �2, 
0 =

√
X−1

X1
(39)

In the presence of a flow with an average Mach number M0, and a plane wall which is normal to
the y axis and a 2D problem, we will use the discrete form suggested by Fung et al. [16, 17]:

Y−(t) =�t SI (t) + 2M0SI I (t) −
(

�t

X1
+ 1

)
Y+(t) (40)

where SI (t) and SI I (t) can be calculated using a recursive form:

SI (t) = 2 cos(�t) exp(−��t)SI (t − �t) − exp(−2��t)SI (t − 2�t)

+ 2

X1

[
Y+(t) −

(
cos(��t) + �

�
sin(��t)

)
exp(−��t)Y+(t − �t)

]
SI I (t) = 2 cos(�t) exp(−��t)SI I (t − �t) − exp(−2��t)SI I (t − 2�t)

+ 1

X1�
sin(��t) exp(−��t)

�
�x

p(t − �t)
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3.4.3. Active wall boundary condition. Further, assuming that the tangential velocity component
u is zero (this makes sense since the transpiration velocity is expected to be much larger than
the tangential velocity at the wall), i.e. setting �u/�t = 0, one obtains the following time-domain
boundary condition for active walls with prescribed impedance:

Yu = − 1
2 (X

+ − X−)

Y−(t) = �t SI (t) + 2M0SI I (t) −
(

�t

X1
+ 1

)
Y+(t)

Y s = −Xs + R

p

(
−�c

2
(X+ + X− + Y+ + Y−) + �

(
−�qi

�xi
+ �

)) (41)

The infinitely rigid impermeable wall condition is recovered taking Z =+∞, and thus (33)
implies that,

Ŵ = 1

By choosing

�v

�t
= 0

for a 2D flow, one recovers the usual perfectly rigid wall condition from (29)2

Y− = Y+

4. NUMERICAL METHOD

This new decomposition of the pressure, velocity and entropy fluxes enables a very simple and
natural use of upwind schemes to enforce numerical stability while minimizing the numerical
dissipation.

In the present work, all inviscid fluxes are written in a quasi-linear form and appear under
the generic form (u(�
/�x)), where u is the advecting velocity and 
 the advected quantity.
To enforce both numerical stability and accuracy for wave propagation problems, it is chosen here
to use high-order upwind dispersion-relation-preserving schemes for all fluxes.

At interior nodes (i.e. for grid point with index 5�i�Nx − 2, where Nx is the index of the last
grid point) the following fourth-order accurate upwind-biased DRP scheme [18] is used:(

u
�


�x

)
i

= ui
1

�x

∑
k=−4,2

ak
i+k (42)

with

a−4 = 0.0161404967151, a−3 = −0.122821279020, a−2 = 0.455332277706

a−1 = −1.2492595882615, a0 = 0.5018904380193, a1 = 0.4399321927296

a2 = −0.04121453788895
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where it was assumed that the convection speed u is positive. The above DRP scheme is modified
as follows near the computational domain boundaries:

• at i = Nx , a sixth-order one-sided upwind scheme is utilized:(
u

�


�x

)
i

= ui
1

�x

∑
k=−6,0

ak
i+k

a−6 = 1/60, a−5 =−6/5, a−4 = 15/4, a−3 = 20/3, a−2 = 15/2 (43)

a−1 = −6, a0 = 49/20

• at i = Nx − 1, the following upwind-biased DRP scheme proposed in Reference [18] is
implemented: (

u
�


�x

)
i

= ui
1

�x

∑
k=−5,1

ak
i+k

a−5 = −0.0306489732244242, a−4 = 0.202225858313369

a−3 = −0.634728026533812, a−2=1.29629965415671 (44)

a−1 = −2.14305478803459, a0 = 1.10888726751399

a1 = 0.201019007808754

• at i = 4, a fifth-order upwind-biased scheme is used:(
u

�


�x

)
i

= ui
1

�x

∑
k=−3,2

ak
i+k

a−3 =−1/30, a−2 = 1/4, a−1 =−1, a0 = 1/3 a1 = 1/2, a2 = −1/20

(45)

• at i = 3, it is replaced by the following third-order upwind scheme:(
u

�


�x

)
i

= ui
1

�x

∑
k=−2,1

ak
i+k

a−2 = 1/6, a−1 =−1, a0 = 1/2, a1 = 1/3

(46)

• at i = 2, the first-order upwind scheme is used:(
u

�


�x

)
i

= ui
1

�x

∑
k=−1,0

ak
i+k

a−1 =−1, a0 = 1

(47)
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• at i = 1, the following downwind scheme is used:(
u

�


�x

)
i

= ui
1

�x

∑
k=0,2

ak
i+k

a0 =−3/5, a1 = 4/5, a2 = −1/5

(48)

The time integration is performed using the third-order TVD Runge–Kutta scheme proposed by
Shu and Osher [19]:

un,1 = un + �t

(
�un

�t

)

un,2 = 1

4

(
3un + un,1 + �t

(
�un,1

�t

))

un+1 = 1

3

(
un + 2un,2 + 2�t

(
�un,2

�t

))
(49)

5. ASSESSMENT OF THE NUMERICAL METHOD ACCURACY

We consider the advection of a 2D entropy spot by a subsonic uniform flow, which is described
in more details in Section 6.4. Here we take the final time to be tf = 3.75 × 10−3, such that the
density perturbation is still in the computational domain, and more importantly, has not reached
the boundary. In this case, we are able to compute the analytic solution �a and compare it with
the numerical solution �n without any influence of the outflow boundary condition. Hence, we
consider the L1 and L2 norms of err=‖�n −�a‖ at tf. Results displayed in Figure 1 show that the
method exhibits the theoretical fourth-order of accuracy on uniform grids, while it is third-order
accurate on curvilinear grids.
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Figure 1. log ‖�n − �a‖L1 (+) and log ‖�n − �a‖L2 (×) expressed as a function of log�x for a uniform
(left) and curvilinear (right) simulation of a 2D entropy spot.
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6. OUTFLOW BOUNDARY CONDITIONS ASSESSMENT

This section is devoted to the presentation of numerical results dealing with the accuracy of the
outflow boundary conditions. The accuracy is assessed for each type of Kovasznay mode [20]
(namely: entropy mode, acoustic mode and vorticity mode). The efficiency on curvilinear grids is
also investigated.

6.1. 1D acoustic wave

We will first present the results obtained when considering an acoustic disturbance in a fluid at rest.
The domain is defined as [−40, 0] and exit boundary conditions are applied on both extremities of
the computational domain. The mesh is uniform with �x = 0.2. The initial perturbation is defined as

�(x, t = 0) = � e−�x2, � = log 2

b2

p(x, t = 0) = c20�(x, t = 0)

u(x, t = 0) = 0

with b= 3 and �= 0.01. Results obtained with CFL= 0.2 are illustrated in Figure 2.
The time history of the norm L1 of the quantity Et/E0 is displayed in Figure 3, where Et and

E0 are the total energy (sum of the internal energy and the kinetic energy) of the perturbation
at time t and the initial time, respectively. It is observed that at large time the residual value,
which corresponds to the total energy of the numerical error, is of the order of 10−8, showing
very good properties of the present outflow boundary condition. This level of error corresponds to
the maximum accuracy that can be obtained on the computer utilized during this work. A careful
examination also reveals the existence of a transient phase associated to the propagation of a
reflected spurious acoustic wave whose energy is 5 × 10−6 times lower than the initial wave.
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-40 -35 -30 -25 -20 -15 -10 -5 0

Figure 2. Instantaneous pressure (in Pa) at time t = 0 (—) and t = 0.1 (- -).
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Figure 3. Time history of the norm L1 of Et/E0 with CFL= 0.2.

Table I. Final value of the energy of the residual
perturbation versus the CFL number.

CFL ‖E0.4/E0‖L1

0.1 5.0609 × 10−8

0.2 5.3303 × 10−8

0.5 9.8096 × 10−8

The sensitivity of the outflow condition with respect to the value of the CFL number is now
investigated repeating the simulation, and compared the numerical values obtained for the quantity
‖Et/E0‖L1 . The final time is t = 0.4. The results are summarized in Table I. It is observed that
the error exhibits a slight sensitivity.

The dependence upon the sharpness of the propagated profile is now investigated by varying
the value of b. The forms of the initial perturbations and the corresponding time histories of
the fluctuating total energy are displayed in Figure 4. The final residual is seen to increase as b
decreases, i.e. as the number of grid points located within the acoustic wave is reduced. The final
values of the residual are given in Table II.

6.1.1. Acoustic sponge zone. As mentioned above, the simulation experiences a non-negligible
loss of precision near the boundary since a high-order upwind scheme cannot be utilized for the
grid points near the boundary in each direction. A consequence is the existence of a reflected
spurious wave, as observed in the previous test case. Thus, we introduce a sponge zone, that is
to say a layer in which the growth of spurious reflected waves will be prevented. The pseudo-
characteristic formulation makes it possible to define and to implement very easily such a sponge
layer. In the present simulation, we impose that X+ = 0 for the first 5 grid points and X− = 0 for
the last 5 grid points in the positive direction of the x axis.
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Figure 4. Initial pressure profile (expressed in Pa) with b= 3, b= 1, b= 1
3 , b= 1

11 (left), and
corresponding histories of L1 norm of Et/E0 (right).

Table II. Final value of the energy of the residual
perturbation versus b.

b ‖E0.4/E0‖L1

3 5.3303 × 10−8

1 4.6160 × 10−7

1
3 9.0317 × 10−6

1
11 1.2010 × 10−5
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Figure 5. Time history of L1 norm of Et/E0 without (—) and with (- -) a sponge zone.

The simulation is carried out with CFL= 0.2 and b = 3. Time history of the fluctuating energy
is displayed in Figure 5. We observe that the presence of a sponge zone absorbs almost perfectly
the reflected numerical waves.
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6.2. 2D acoustic wave

As in the 1D case, we study the evolution of an initial 2D acoustic pulse. The computational
domain is [−40, 0]2 and exit boundary conditions are applied on all boundaries of the computational
domain. The initial disturbance is defined as

�(x, y, t = 0) = � e−�(x2+y2)

p(x, y, t = 0) = c20�(x, y, t = 0)

u(x, y, t = 0) = 0

v(x, y, t = 0) = 0

with �= 0.01 and b= 3 and CFL= 0.2. The time final for the simulations is taken at t = 0.5.
The instantaneous pressure field at different times is displayed in Figure 6. The norm L1 of
the normalized residual energy Et/E0 is of the order of 10−3, and it is observed that the
error concentrates in regions located near boundaries where the numerical accuracy is
modified.

The same numerical test have been carried out on a curvilinear grid in order to investigate the
accuracy of the method on non-orthogonal grids. The parameters are as in the Cartesian case:
CFL= 0.2, b= 3 and �= 0.01 with t = 0.5 being the final time. The curvilinear grid (which is
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Figure 6. Contours of the acoustic wave from 500�t to 2000�t with interval 500�t
(from left to right and top to bottom).
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Table III. Residual fluctuating energy on uniform and curvilinear grids for
the two forms of the acoustic fluxes.

Grid Et/E0 using (11) Et/E0 using (13)

Uniform grid 1.4086 × 10−3 1.2472 × 10−3

Curvilinear grid 1.65 × 10−3 1.5315 × 10−3

a perturbation of a Cartesian grid by a sine function), is defined analytically by

�1 = x + �x

4
sin y

�2 = y + �y

4
sin x

To discretize the metrics,

• at i = Nx , a first-order scheme is used:(
�� j

�x

)
i

= � j
i − � j

i−1

�x
(50)

• at 2�i�Nx − 1, we use the following second-order scheme:(
�� j

�x

)
i

= � j
i+1 − � j

i−1

2�x
(51)

• at i = 1, a first-order scheme is used:(
�� j

�x

)
i

= � j
i+1 − � j

i

�x
(52)

Time histories of the L1 norm of Et/E0 are summarized in Table III.

The method is seen to be as accurate on curvilinear grids as on Cartesian grids, the magnitude of
the residual disturbance being the same. In addition, formulation (13) gives slightly better results,
and therefore must be preferred.

6.3. The 1D entropy wave

We now present results obtained when considering an initial Gaussian density perturbation in a
uniform subsonic flow. The Mach number is taken equal to 0.5. The computational domain is
the same as in the case of the 1D acoustic wave. Inflow and outflow boundary conditions are
applied, respectively, on the left and right of the computational domain. The mesh is uniform with
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Figure 7. Instantaneous density profile at time t = 0 (—) and t = 0.05 (- -).

�x = 0.2. The initial perturbation is defined as

�(x, t = 0) = � e−�x2

p(x, t = 0) = 0

u(x, t = 0) = 0

with CFL= 0.2, b= 3, �= 0.01 and time final t = 0.5. The evolution of the density field is illustrated
in Figure 7. The maximum residual amplitude of the density perturbation is of the order of 10−6

of the initial perturbation, and thus showing good properties of the present method.

6.4. 2D entropy spot

As in the 2D case for the acoustic wave, the computational domain is [−40, 0]2. Subsonic inlet
and subsonic outlet boundary conditions are applied, respectively, on the left and right of the
computational domain. The mesh is uniform with �x = �y = 0.2. The flow is uniform and subsonic
with a Mach number which is equal to 0.5. The initial perturbation is defined as follows:

�(x, t = 0) = � e−�(x2+y2)

p(x, t = 0) = 0

ur (x, t = 0) = 0

u�(x, t = 0) = 0

The parameters chosen are CFL= 0.1, b= 3 and �= 0.01. Instantaneous plots of the density
perturbation at time t = 0 and t = 0.2 are given in Figure 8.

As in the case of the 2D acoustic wave, we carry out the same test on a curvilinear grid, with
the following parameters: CFL= 0.2, b= 3 and �= 0.01 with tfinal = 0.5. The residual values of
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Figure 8. Contours of instantaneous density field at time t = 0 (left) and t = 0.1 (right).

Table IV. Norm of the residual error on density.

Grid ‖�t/�0‖L1

Uniform grid 6.6426 × 10−5

Curvilinear grid 6.6424 × 10−5

‖�t/�0‖L1 are presented below in Table IV. The residual spurious fluctuation is observed to be
negligible, and the accuracy is preserved on the curvilinear grid.

6.5. Vortex advection by a uniform flow

At t = 0, we introduce at the centre of the computational domain, a 2D vortex with the following
initial conditions:

ux (x, y) = u0 + a0y exp [− ln 2(x2 + y2)]
uy(x, y) = −a0x exp [− ln 2(x2 + y2)]

with a0 = 10ms−1. The flow is uniform with the Mach number equal to 3, with the computational
domain being [−10, 10]2 and a uniform mesh �x = �y = 0.1.

For the boundary conditions, we use the Equations (15). The evolution of the pressure field is
presented in Figure 9.

The time history of the norms L1 of the vorticity and the pressure perturbation are presented in
Figure 10. To take into account the generation of spurious reflected waves inside the computational
domain, we present in addition, the time history of the norms L1 of the vorticity and the pressure
perturbation, outside the five-cell-wide region in which the numerical accuracy is changed in
front of the outlet boundary (i.e. Nx − 4�i�Nx). It is observed that 99% of the L1 norm of
the error originates in this region, and that very satisfactory results are obtained outside this
outlet layer.
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Figure 9. Contours of the vortex pressure field from t = 0 to 500�t (from left to right and top to bottom).

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0.01

 0.1

 1

 10

 100

 1000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Figure 10. History of L1 norm of the vorticity (right) and the pressure (left) perturbation:
(–) full computational domain, (- -) outside outlet layer.

7. ACTIVE WALL BOUNDARY CONDITION ASSESSMENT

We now check the accuracy of the time-domain impedance condition defined in Section 3.4 by
considering the canonical case of a monochromatic plane acoustic wave that impinges on a wall
with a prescribed impedance. The experimental case of the 6.7% perforate treatment panel studied
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Figure 11. Numerical (×) and theoretical (+) values for the amplitude of the reflected wave expressed as
a function of the PPW factor, for varying �.

by Motsinger and Kraft [21] is used here, since experimental values of R and X are available.
Following Tam and Auriault [15], the parameters of the impedance model (34) are taken as follows:
R0 = 0.2, X−1 = 13 480, and X1 = 0.0000739.
The initial pressure perturbation is defined as follows:

p(x, y, t = 0)= p0 + 2 cos(�y/c)

The efficiency of the method is checked by comparing the computed amplitude of the reflected
wave for different values of � with its theoretical value. The computational domain is [−0.02, 0]
and the same uniform mesh with �y = 10−4 is utilized for all simulations. The CFL number (based
on the speed of sound) is taken equal to 0.5. It is worth noting that varying � is equivalent to
changing the wavelength of the incident wave. Since both the grid and CFL number are kept
constant, the number of grid point per wavelength (PPW) varies with �. For a frequency � of
1 kHz, we use 62.8 grid points to discretize each wavelength. At the highest considered frequency,
which is equal to 5 kHz, the PPW factor is equal to 12.6, ensuring that the wave propagation
phenomena will be correctly captured outside the wall region. The computed and exact amplitudes
are displayed in Figure 11, and the relative error is plotted in Figure 12. A satisfactory agreement is
recovered since the relative error is within 5% in all cases, showing the efficiency of the proposed
time-domain impedance condition.

In order to check the convergence of the boundary condition with respect to the PPW factor,
a second set of simulations was carried out with fixed � and CFL but varying grid resolution.
The relative error committed on the amplitude of the reflected wave versus the PPW for � = 1 kHz
is plotted in Figure 13. It is seen that the maximum relative error level can be significant if the
PPW factor is not high enough. The error induced by the time-impedance model is much higher
than the one introduced by the DRP scheme used to compute the fluxes, and the computational
grid must therefore be designed to enforce an acceptable error level at the active wall boundary.
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Figure 12. Relative numerical error in the evaluation of the amplitude of the reflected wave
versus the PPW factor, for varying �.
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Figure 13. Numerical error in the evaluation of the amplitude, with � = 1 kHz.

8. INFINITELY RIGID IMPERMEABLE WALL BOUNDARY
CONDITION ASSESSMENT

We now compare the accuracy of the infinitely rigid impermeable wall condition defined in Section
3.4 with the following first-order approximations:

ui,1 = 0 ∀ 1�i�Nx

vi,1 = 0 ∀ 1�i�Nx

pi,1 = pi,2 ∀ 1�i�Nx

si,1 = si,2 ∀ 1�i�Nx
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Figure 14. Relative numerical error using pseudo-characteristic formulation (+) versus relative numerical
error using a first-order approximation (×) for the amplitude of the reflected wave expressed as a

function of the PPW factor, for varying �.

The initial pressure perturbation is defined as follows:

p(x, y, t = 0) = p0 + 2 cos (�y/c)

We note that the boundary conditions obtained using Sesterhenn’s formulation are exact. By
imposing Y+ = Y− at the boundary, the amplitude of the incident and reflected waves are forced to
be identical. Hence, we check the efficiency of the method by comparing the computed amplitude of
the reflected wave over a wavelength near the exit of the computational domain. The computational
domain is [−2, 0] and the same uniform mesh with �y = 10−2 is utilized for all simulations. The
CFL number is taken equal to 0.2. Since both the grid and CFL number are kept constant, the
number of grid point per wavelength (PPW) varies with �. We consider the PPW factor varying
between 10 and 50. The relative numerical error for both Sesterhenn’s formulation and the first-
order approximation used is plotted in Figure 14. It is clear that Sesterhenn’s boundary conditions
gives better results.

9. CONCLUSION

A numerical method well-suited for CAA purposes was presented and assessed. It relies on the
pseudo-characteristic formulation of the Navier–Stokes equations recently proposed by Sesterhenn.
A very interesting feature of this formulation is that it provides an explicit splitting of the fluxes
between hydrodynamic, entropy and acoustic disturbances. It has been shown that the accuracy
of the method on curvilinear grid can be improved using a specific decomposition of the acoustic
fluxes. A wide set of boundary conditions has been proposed and assessed, including time-domain
impedance boundary condition, which is proved to be efficient. An important feature of the pseudo-
characteristic formulation is that it enables the definition of thermodynamically consistent boundary
conditions.
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